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Real Numbers �

Sequences of nested closed intervals
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Add Infinity

� All real numbers have reciprocals except �.

� But we cannot necessarily detect �.

� So we have to include ��� denoted by �.

� This is known as the one-point compactification of
the real line denoted ��.
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Add Bottom

� However, including � leads to other difficulties.

� What are we to make of �
�?

� We know that for any real number �
�
 � � �

and for any non-zero real number �
�
 ��� � 
	

� The only sensible answer is to introduce the concept
of an ‘‘undefined number’’ or ‘‘not a number’’ de-
noted by NaN in the floating point community.

� Domain theoretically, this object is of course bot-
tom denoted �.



Continuous Domain
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� ��� is the set of closed intervals in � � ��	 in-
cluding intervals through �.

� For example:
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Vectors

� Use Vectors to represent extended rational num-
bers
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� Drop � for convenience

� Picture representation

� Note scaling invariance



Decimal Representation

� End points � �
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Efficient algorithms for � and � of finite representations



Redundant Binary Representation

� End points � �
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� Digit map
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Efficient algorithms for � and � of finite representations



Continued Fraction Representation

� End points
�

� Base interval
�
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� Digit map


� ��	 � � �



�
� Example�

� � 1 �



2 �



2 �



2 � � � �
�


� ��
���	 � �
� ��


� �
� ��
���		 �
�
�
��

�
�

�
� �
	


 	 	 	 � 
	��


� �
� �
� ��
���			 �
�
�
��

��
�

�
� �
	�� 
	��� 	 	 	�


� �
� �
� �
� ��
���				 �
�
��
���

��
��

�
� �
	�

 	 	 	 � 
	�
� 	 	 	�

Elegant algorithms for transcendental functions



Matrices

� Use Matrices to represent Möbius transformations
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� Picture representation
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� Note scaling invariance



Properties

� Composition of Möbius transformations is equiv-
alent to product of matrices

� �� ��		 � �� ��	 ��	

� Application of Möbius transformations to extended
rational numbers is equivalent to product of ma-
trices and vectors

� �� 	 � � � �

� What do singular matrices represent?	
� �
� 
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Special Base Interval
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The Refinement Property
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Unsigned General Normal Product

� End points
�

� Base interval
�����

� Digit set
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Comparisons

� Möbius transformation	
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� Decimal representation
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� Redunandant binary representation
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� Continued fraction representation
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Signed General Normal Product

� Sign set
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Unsigned Exact Floating Point

3 digit matrices
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Conjugate to the redundant binary
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Signed Exact Floating Point

4 sign matrices
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Tensors

� Use Tensors to represent
2-D Möbius transformations
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Information in a tensor
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Basic Arithmetic Operations
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Transcendental Functions

Transcendental functions can be constructed us-
ing functions of the form

f(x) =

x

x

x

x

x

T0

T1

T2

T3

T4

This has been done for sin, cos, tan, arctan, exp,
ln, tanh, arcsinh, arctanh and pow.



Expression Trees
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Logarithm
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Exponential
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Tangent
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Arctangent
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Converting Expression Tree to Exact
Floating Point
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� Reduction Rules

1. Absorb vector into matrix to give vector

2. Absorb matrix into matrix to give matrix

3. Absorb vector into tensor to give vector or matrix

4. Absorb matrix into tensor to give tensor

5. Exchange digit matrices between tensors

6. Emit exact floating point from root node



Absorption Rules

� Absorption into matrices

� Absorption into tensors

or

or
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Exchange Rule

� Exchange digit matrices between tensors

D
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Flow
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Emission Rules

� Emit digit matrix (or sign matrix) from matrix

Dd

M

provided
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� Emit digit matrix (or sign matrix) from tensor
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Matrix Information Flow Analysis

� Arbitrary matrix in expression tree
ε

δ

digits

digits
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� Want to emit � digits

� However insufficient information

� So, need to absorb � digits

� Question: Find maximum � such that cannot emit
more than � digits

� Answer:
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� Fast algorithm for this involves basic arithmetic
operations and counting bits.



Tensor Information Flow Analysis

� Arbitrary tensor in expression tree
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� Want to emit � digits

� However insufficient information

� So, need to absorb �� and �� digits

� 2 Questions: Find maximum ���� such that cannot
emit more than � digits regardless of the number
of absorptions on the right/left

� 2 Answers:Similar to matrix formula



Pi

Ramanujan’s amazing formula for �
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