Algorithms for Exact Real Arithmetic using Möbius Transformations

Peter J. Potts Imperial College London

Tutorial Workshop/Summer School Real Number Computation at Indiana University Conference Center in Indianapolis, Indiana, USA

> 10:30-11:15 Saturday Morning Session 20 June 1998

Real Numbers \mathbb{R}

Sequences of nested closed intervals

 $[p_0, q_0] \supseteq [p_1, q_1] \supseteq [p_2, q_2] \supseteq \cdots$

$$|p_n - q_n| \to 0 \text{ as } n \to \infty$$

$$\bigcap_{n\in\mathbb{N}} \left[p_n, q_n\right] = \{x\}$$

Restrict end points to countable subset $\mathbb{F} \subset \mathbb{R}$

(a) Rational numbers \mathbb{Q}

(b) 2-adic numbers
$$\left\{ \frac{n}{2^m} \middle| n, m \in \mathbb{Z} \right\}$$

(c) Quadratic field $\mathbb{Q}\left(\sqrt{5}\right) = \left\{ p + q\sqrt{5} \middle| p, q \in \mathbb{Q} \right\}$

Add Infinity

- All real numbers have reciprocals except 0.
- But we cannot necessarily detect 0.
- So we have to include 0^{-1} denoted by ∞ .
- This is known as the one-point compactification of the real line denoted \mathbb{R}^{∞} .

Add Bottom

- \bullet However, including ∞ leads to other difficulties.
- What are we to make of $0 \times \infty$?
- We know that for any real number x $0 \times x = 0$ and for any non-zero real number x $x \times x^{-1} = 1$.
- The only sensible answer is to introduce the concept of an "**undefined number**" or "**not a number**" denoted by **NaN** in the floating point community.
- **Domain theoretically**, this object is of course bottom denoted ⊥.

Continuous Domain

- \mathbb{IR}^{∞} is the set of closed intervals in $\mathbb{R} \cup \{\infty\}$ including intervals through ∞ .
- For example: [1, -1] denotes the set $\{x \in \mathbb{R} \mid x \leq -1\} \cup \{x \in \mathbb{R} \mid x \geq 1\} \cup \{\infty\}.$

Vectors

 Use Vectors to represent extended rational numbers

$$a, b \in \mathbb{Z} - \{0\}$$
$$\Phi\begin{pmatrix} 0\\0 \end{pmatrix} = \bot$$
$$\Phi\begin{pmatrix} a\\0 \end{pmatrix} = \infty$$
$$\Phi\begin{pmatrix} a\\b \end{pmatrix} = \frac{a}{b}$$

- \bullet Drop Φ for convenience
- Picture representation

• Note scaling invariance

Decimal Representation

• End points

$$\left\{\frac{n}{10^m} \middle| n, m \in \mathbb{Z}\right\}$$

• Base interval

[0, 1]

• Digit set

 $d \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

• Digit map

$$f_d\left(x\right) = \frac{x+d}{10}$$

• Example

Efficient algorithms for + and - of finite representations

Redundant Binary Representation

• End points

$$\left\{\frac{n}{2^m} \middle| n, m \in \mathbb{Z}\right\}$$

Base interval

$$[-1, 1]$$

• Digit set

$$d \in \{-1, 0, 1\}$$

• Digit map

$$f_d\left(x\right) = \frac{x+d}{2}$$

• Example

$$\begin{array}{rcl} 0 \, \cdot \, \boxed{1 \, -1 \, 0 \, 1} \cdots \\ & & \downarrow \\ f_1 \left([-1, 1] \right) \, = \, [0, 1] \\ f_1 \left(f_{-1} \left([-1, 1] \right) \right) \, = \, \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} \\ f_1 \left(f_{-1} \left(f_0 \left([-1, 1] \right) \right) \right) \, = \, \begin{bmatrix} \frac{1}{8}, \frac{3}{8} \end{bmatrix} \\ f_1 \left(f_{-1} \left(f_0 \left(f_1 \left([-1, 1] \right) \right) \right) \, = \, \begin{bmatrix} \frac{1}{4}, \frac{3}{8} \end{bmatrix} \end{array}$$

Efficient algorithms for + and - of finite representations

Continued Fraction Representation

- End points
- Base interval

 $[1,\infty]$

 \mathbb{Q}

• Digit set

 $d \in \{1, 2, 3, 4, 5, \ldots\}$

• Digit map

$$f_d\left(x\right) = d + \frac{1}{x}$$

• Example

$$\sqrt{2} = \boxed{1} + \frac{1}{\boxed{2} + \frac{1}{\boxed{2} + \frac{1}{\boxed{2} + \cdots}}}$$

$$f_{1}([1,\infty]) = [1,2]$$

$$f_{1}(f_{2}([1,\infty])) = \left[\frac{4}{3}, \frac{3}{2}\right] = [1.333..., 1.5]$$

$$f_{1}(f_{2}(f_{2}([1,\infty]))) = \left[\frac{7}{5}, \frac{10}{7}\right] = [1.4, 1.428...]$$

$$f_{1}(f_{2}(f_{2}(f_{2}([1,\infty])))) = \left[\frac{24}{17}, \frac{17}{12}\right] = [1.411..., 1.416...]$$
Elegant algorithms for transcendental functions

Matrices

• Use Matrices to represent Möbius transformations

 $a, b, c, d \in \mathbb{Z} \text{ and } x \in \mathbb{R}$ $\Psi \begin{pmatrix} a & c \\ b & d \end{pmatrix} (x) = \frac{ax+c}{bx+d}$

- \bullet \mathbf{Drop} Ψ for convenience
- Picture representation

• Note scaling invariance

Properties

• Composition of Möbius transformations is equivalent to product of matrices

 $M\left(N\left(x\right)\right) = \left(M \bullet N\right)\left(x\right)$

 Application of Möbius transformations to extended rational numbers is equivalent to product of matrices and vectors

$$M\left(V\right) = M \bullet V$$

• What do singular matrices represent?

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} (x) = 0 \times x = \begin{cases} 0 & \text{if } x \neq \infty \\ \bot & \text{if } x = \infty \end{cases}$$
 ause

because

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ b \end{pmatrix} \equiv \begin{cases} 0 & \text{if } b \neq 0 \\ \bot & \text{if } b = 0 \end{cases}$$

Special Base Interval

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} ([0, \infty]) = \begin{cases} \begin{bmatrix} \frac{a}{b}, \frac{c}{d} \end{bmatrix} & \text{if } \det \begin{pmatrix} a & c \\ b & d \end{pmatrix} < 0 \\ \begin{bmatrix} \frac{c}{d}, \frac{a}{b} \end{bmatrix} & \text{if } \det \begin{pmatrix} a & c \\ b & d \end{pmatrix} > 0 \end{cases}$$

The Refinement Property

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} ([0,\infty]) \subseteq [0,\infty]$$
iff

$$\begin{pmatrix} a, b, c, d \ge 0 \\ \mathbf{or} \\ a, b, c, d \le 0 \end{pmatrix}$$

and

$$\left(\begin{array}{c}a\\b\end{array}\right), \left(\begin{array}{c}c\\d\end{array}\right) \neq \left(\begin{array}{c}0\\0\end{array}\right)$$

Unsigned General Normal Product

- End points
- Base interval

 $[0,\infty]$

 \mathbb{Q}

• Digit set

$$M \in \left\{ \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) \middle| a, b, c, d \in \mathbb{N} \right\}$$

• Digit map

$$f_M\left(x\right) = M\left(x\right)$$

Example

$$M_0([0,\infty]) = [1,\infty]$$

$$M_0(M_1([0,\infty])) = [2,3]$$

$$M_0(M_1(M_2([0,\infty]))) = \left[\frac{5}{2},\frac{11}{4}\right] = [2.5,2,75]$$

$$M_0(M_1(M_2(M_3([0,\infty])))) = \left[\frac{8}{3},\frac{49}{18}\right] = [2.666\dots,2,722\dots]$$

Comparisons

Möbius transformation

$$\left(\begin{array}{cc}a&c\\b&d\end{array}\right)(x)=\frac{ax+c}{bx+d}$$

• Decimal representation r + d (1)

$$f_d(x) = \frac{x+d}{10} = \begin{pmatrix} 1 & d \\ 0 & 10 \end{pmatrix} (x)$$

Redunandant binary representation

$$f_d(x) = \frac{x+d}{2} = \begin{pmatrix} 1 & d \\ 0 & 2 \end{pmatrix} (x)$$

Continued fraction representation

$$f_d(x) = d + \frac{1}{x} = \begin{pmatrix} d & 1\\ 1 & 0 \end{pmatrix} (x)$$

• Sign set

$$M \in \left\{ \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) \middle| a, b, c, d \in \mathbb{Z} \right\}$$

• Sign map

$$f_{M}\left(x\right) = M\left(x\right)$$

• Unsigned general normal product

x

• Example

$$M_0([0,\infty]) = [-1,1]$$

$$M_0(M_1([0,\infty])) = [0,1]$$

$$M_0(M_1(M_2([0,\infty]))) = [\frac{1}{4}, \frac{3}{4}]$$

$$M_0(M_1(M_2(M_3([0,\infty])))) = [\frac{1}{4}, \frac{1}{2}]$$

Unsigned Exact Floating Point

3 digit matrices

$$D_0 \stackrel{\text{def}}{=} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$
$$D_{-1} \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix} \xrightarrow[0]{\stackrel{1}{\longrightarrow}} 1 \xrightarrow[3]{\stackrel{\text{def}}{\longrightarrow}} D_1 \stackrel{\text{def}}{=} \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$

Conjugate to the redundant binary

 $D_{d} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 & d \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3+d & 1+d \\ 1-d & 3-d \end{pmatrix}$

Signed Exact Floating Point

4 sign matrices

Form a cyclic group of order 4

$$egin{array}{rl} S^1_\infty &=& S_\infty = \ {
m rotation \ by } rac{\pi}{2} \ S^2_\infty &=& S_- \ S^3_\infty &=& S_0 \ S^4_\infty &=& S_+ \end{array}$$

Tensors

Use Tensors to represent 2-D Möbius transformations

 $a,b,c,d,e,f,g,h\in\mathbb{Z}$ and $x,y\in\mathbb{R}$

$$\Upsilon \left(\begin{array}{ccc} a & c & e & g \\ b & d & f & h \end{array} \right) (x,y) = \frac{axy + cx + ey + g}{bxy + dx + fy + h}$$

• Picture representation

Information in a tensor

$$\begin{pmatrix} a & c & e & g \\ b & d & f & h \end{pmatrix} ([0, \infty], [0, \infty])$$

$$= \begin{pmatrix} a & c \\ b & d \end{pmatrix} ([0, \infty]) \cup \begin{pmatrix} e & g \\ f & h \end{pmatrix} ([0, \infty]) \cup \begin{pmatrix} a & e \\ b & f \end{pmatrix} ([0, \infty]) \cup \begin{pmatrix} c & g \\ d & h \end{pmatrix} ([0, \infty])$$

Basic Arithmetic Operations

$$\left(\begin{array}{ccc}a & c & e & g\\b & d & f & h\end{array}\right)(x,y) = \frac{axy + cx + ey + g}{bxy + dx + fy + h}$$

$$\begin{aligned} T_{+}(x,y) &= \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} (x,y) = x + y \\ T_{-}(x,y) &= \begin{pmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} (x,y) = x - y \\ T_{\times}(x,y) &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} (x,y) = x \times y \\ T_{\div}(x,y) &= \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} (x,y) = x \div y \end{aligned}$$

Transcendental Functions

Transcendental functions can be constructed using functions of the form

This has been done for sin, cos, tan, arctan, exp, In, tanh, arcsinh, arctanh and pow.

Expression Trees

Logarithm

• $\mathbb{R}^{\infty} \Longrightarrow \left[\frac{1}{2}, 2\right]$ $\log\left(x\right) = \log\left(\frac{x}{2}\right) + \log\left(2\right)$ $\log\left(x\right) = \log\left(2x\right) - \log\left(2\right)$ • $\left[\frac{1}{2}, 2\right]$ Information log(x) =1 -1 T_{0} 0 3^3 Χ 0 T_1 0 $\frac{2}{0}$ 555 Х 0 T_2 Х

$$T_0 = \begin{pmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$
$$T_{n\geq 1} = \begin{pmatrix} n & 2n+1 & n+1 & 0 \\ 0 & n+1 & 2n+1 & n \end{pmatrix}$$

Exponential

•
$$\mathbb{R}^{\infty} \Longrightarrow [-1, 1]$$

 $\exp(x) = \left(\exp\left(\frac{x}{2}\right)\right)^2$

$$T_n = \begin{pmatrix} 2n+2 & 2n+1 & 2n & 2n+1 \\ 2n+1 & 2n & 2n+1 & 2n+2 \end{pmatrix}$$

Tangent

$$T_0 = \begin{pmatrix} 1 & 1 & -1 & -1 \\ 2 & 0 & 0 & 2 \end{pmatrix}$$
$$T_{n\geq 1} = \begin{pmatrix} 2n+1 & 2n-1 & 2n+1 & 2n+3 \\ 2n+3 & 2n+1 & 2n-1 & 2n+1 \end{pmatrix}$$

Arctangent

•
$$\mathbb{R}^{\infty} \Longrightarrow [-1,1]$$

arctan $(S_{+}(x)) = \arctan(S_{0}(x)) + \frac{\pi}{4}$
arctan $(S_{\infty}(x)) = \arctan(S_{0}(x)) + \frac{3\pi}{4}$
• $[-1,1]$
rctan($S_{0}(x)$) = $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 2 & 1 \\ 2 & 0 & 2 & 1 \\ 2 & 0 & 2 & 1 \\ 2 & 0 & 2 & 1 \\ 2 & 0 & 2 & 1 \\ 1 & 1 & 0 & 2 \\ 2 & 1 & 1 & 2 & 1 \\ 1 & 0 & 2 & 1 \\ 2 & 0 & 2 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 &$

$$T_0 = \begin{pmatrix} 1 & 1 & -1 & -1 \\ 2 & 0 & 0 & 2 \end{pmatrix}$$
$$T_{n\geq 1} = \begin{pmatrix} 2n+1 & n & 0 & n+1 \\ n+1 & 0 & n & 2n+1 \end{pmatrix}$$

Converting Expression Tree to Exact Floating Point

Reduction Rules

- 1. Absorb vector into matrix to give vector
- 2. Absorb matrix into matrix to give matrix
- 3. Absorb vector into tensor to give vector or matrix
- 4. Absorb matrix into tensor to give tensor
- 5. Exchange digit matrices between tensors
- 6. Emit exact floating point from root node

Absorption Rules

Absorption into matrices

Absorption into tensors

Exchange Rule

• Exchange digit matrices between tensors

provided

$D_d([0,\infty]) \supseteq T([0,\infty])$

Emission Rules

• Emit digit matrix (or sign matrix) from matrix

provided

```
D_d([0,\infty]) \supseteq M([0,\infty])
```

• Emit digit matrix (or sign matrix) from tensor

provided

 $D_d([0,\infty]) \supseteq T([0,\infty])$

Matrix Information Flow Analysis

• Arbitrary matrix in expression tree

$$ε$$
 digits
 \uparrow
 Λ
 δ digits
 $M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$

- Want to **emit** ϵ digits
- However insufficient information
- So, need to **absorb** δ digits
- Question: Find maximum δ such that cannot emit more than ϵ digits
- Answer:

$$\delta = \epsilon + \left\lfloor \log_2 \left(\frac{\left| \det \left(M \right) \right|}{\max \left(\left| a + b \right|, \left| c + d \right| \right)^2} \right) \right\rfloor$$

• Fast algorithm for this involves basic arithmetic operations and counting bits.

Tensor Information Flow Analysis

• Arbitrary tensor in expression tree

- Want to **emit** ϵ digits
- However insufficient information
- \bullet So, need to absorb $\delta_{\rm L}$ and $\delta_{\rm R}$ digits
- 2 Questions: Find maximum $\delta_{L/R}$ such that cannot emit more than ϵ digits regardless of the number of absorptions on the right/left
- 2 Answers: Similar to matrix formula

Pi

Ramanujan's amazing formula for π

$$\frac{1}{\pi} = \sum_{n=0}^{\infty} (-1)^n \frac{12(6n)!}{(n!)^3(3n)!} \frac{545140134n + 13591409}{(640320^3)^{n+\frac{1}{2}}}$$

with some magic can be converted into

$$\frac{\sqrt{10005}}{\pi} = \left(\begin{array}{cc} 6795705 & 6795704\\ 213440 & 213440 \end{array}\right) \prod_{n=1}^{\infty} M_n$$

where

$$M_{n} = \begin{pmatrix} a_{n} - b_{n} - c_{n} & a_{n} + b_{n} - c_{n} \\ a_{n} + b_{n} + c_{n} & a_{n} - b_{n} + c_{n} \end{pmatrix}$$

$$a_{n} = 10939058860032000n^{4}$$

$$b_{n} = (2n - 1) (6n - 5) (6n - 1) (n + 1)$$

$$c_{n} = (2n - 1) (6n - 5) (6n - 1) (545140134n + 13591409)$$

World Record