Algorithms for Exact Real Arithmetic using Möbius Transformations

Peter J. Potts Imperial College London

Tutorial Workshop/Summer School Real Number Computation at Indiana University Conference Center in Indianapolis, Indiana, USA

> 10:30-11:15 Saturday Morning Session 20 June 1998

Real Numbers R

Sequences of nested closed intervals

 $[p_0, q_0] \supseteq [p_1, q_1] \supseteq [p_2, q_2] \supseteq \cdots$

$$
|p_n - q_n| \to 0 \text{ as } n \to \infty
$$

$$
\bigcap_{n\in\mathbb{N}}\left[p_n,q_n\right]=\left\{x\right\}
$$

Restrict end points to countable subset

(a) Rational numbers $\mathbb Q$

(b) 2-adic numbers
$$
\left\{ \frac{n}{2^m} \middle| n, m \in \mathbb{Z} \right\}
$$

(c) Quadratic field $\mathbb{Q}(\sqrt{5}) = \left\{ p + q\sqrt{5} \middle| p, q \in \mathbb{Q} \right\}$

Add Infinity

- \bullet All real numbers have reciprocals except $0.$
- \bullet But we cannot necessarily detect 0 .
- So we have to include 0^{-1} denoted by ∞ .
- This is known as the one-point compactification of the real line denoted \mathbb{R}^{∞} .

Add Bottom

- \bullet However, including ∞ leads to other difficulties.
- What are we to make of $0 \times \infty$?
- \bullet We know that for any real number x $0 \times x = 0$ and for any non-zero real number x $x \times x^{-1} = 1.$
- The only sensible answer is to introduce the concept of an **''undefined number''** or **''not a number''** denoted by **NaN** in the floating point community.
- **Domain theoretically**, this object is of course bottom denoted \perp .

Continuous Domain

- I \mathbb{R}^{∞} is the **set of closed intervals** in $\mathbb{R} \cup \{\infty\}$ including intervals through ∞ .
- **For example**: $[1, -1]$ denotes the set ${x \in \mathbb{R} \mid x \le -1} \cup {x \in \mathbb{R} \mid x \ge 1} \cup {\infty}.$

Vectors

 Use **Vectors** to represent **extended rational numbers**

$$
a, b \in \mathbb{Z} - \{0\}
$$

$$
\Phi\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \bot
$$

$$
\Phi\begin{pmatrix} a \\ 0 \end{pmatrix} = \infty
$$

$$
\Phi\begin{pmatrix} a \\ b \end{pmatrix} = \frac{a}{b}
$$

- **Drop** Φ for convenience
- **Picture** representation

 Note scaling invariance

Decimal Representation

 End points

$$
\left\{\frac{n}{10^m}\Big|\,n,m\in\mathbb{Z}\right\}
$$

 Base interval

 $[0, 1]$

 Digit set

 $d \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 Digit map

$$
f_d\left(x\right) = \frac{x+d}{10}
$$

 Example

$$
0.\overline{\mathbf{3}|\mathbf{1}|\mathbf{7}|\mathbf{4}}\cdots
$$

$$
\Downarrow
$$

$$
f_3([0,1]) = \left[\frac{3}{10}, \frac{4}{10}\right]
$$

$$
f_3(f_1([0,1])) = \left[\frac{31}{100}, \frac{32}{100}\right]
$$

$$
f_3(f_1(f_7([0,1]))) = \left[\frac{317}{1000}, \frac{318}{1000}\right]
$$

$$
f_3(f_1(f_7(f_4([0,1]))) = \left[\frac{3174}{10000}, \frac{3175}{10000}\right]
$$

Efficient algorithms for $+$ and $-$ of finite representations

Redundant Binary Representation

 End points

$$
\left\{\frac{n}{2^m}\middle|\,n,m\in\mathbb{Z}\right\}
$$

 Base interval

$$
\left[-1,1\right]
$$

 Digit set

$$
d \in \{-1,0,1\}
$$

 Digit map

$$
f_d\left(x\right) = \frac{x+d}{2}
$$

 Example

$$
0.\overline{1|-1|0|1} \cdots
$$

\n
$$
f_1([-1,1]) = [0,1]
$$

\n
$$
f_1(f_{-1}([-1,1])) = [0,\frac{1}{2}]
$$

\n
$$
f_1(f_{-1}(f_0([-1,1]))) = [\frac{1}{8},\frac{3}{8}]
$$

\n
$$
f_1(f_{-1}(f_0(f_1([-1,1]))) = [\frac{1}{4},\frac{3}{8}]
$$

Efficient algorithms for $+$ and $-$ of finite representations

Continued Fraction Representation

- **End points**
- \bullet **Base interval**

 $[1,\infty]$

 \mathbb{Q}

 Digit set

 $d \in \{1, 2, 3, 4, 5, \ldots\}$

 Digit map

$$
f_d\left(x\right) = d + \frac{1}{x}
$$

 Example

$$
\sqrt{2} = \boxed{1} + \frac{1}{\boxed{2} + \frac{1}{\boxed{2} + \frac{1}{\boxed{2} + \dotsb}}}
$$

$$
f_1([1, \infty]) = [1, 2]
$$

\n
$$
f_1(f_2([1, \infty])) = [\frac{4}{3}, \frac{3}{2}] = [1.333\dots, 1.5]
$$

\n
$$
f_1(f_2(f_2([1, \infty])) = [\frac{7}{5}, \frac{10}{7}] = [1.4, 1.428\dots]
$$

\n
$$
f_1(f_2(f_2(f_2([1, \infty)))) = [\frac{24}{17}, \frac{17}{12}] = [1.411\dots, 1.416\dots]
$$

\nElegant algorithms for *transcendental functions*

Matrices

• Use Matrices to represent Möbius transformations

$$
a, b, c, d \in \mathbb{Z} \text{ and } x \in \mathbb{R}
$$

$$
\Psi \begin{pmatrix} a & c \\ b & d \end{pmatrix} (x) = \frac{ax + c}{bx + d}
$$

- Drop Ψ for convenience
- Picture representation

• Note scaling invariance

Properties

 Composition of **Möbius transformations** is equivalent to **product of matrices**

$$
M\left(N\left(x\right)\right)=\left(M\bullet N\right)\left(x\right)
$$

 Application of **Möbius transformations** to **extended rational numbers** is equivalent to **product of matrices and vectors**

$$
M\left(V\right)=M\bullet V
$$

 What do singular matrices represent?

$$
\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} (x) = 0 \times x = \begin{cases} 0 & \text{if } x \neq \infty \\ \bot & \text{if } x = \infty \end{cases}
$$

because

$$
\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ b \end{pmatrix} \equiv \begin{cases} 0 & \text{if } b \neq 0 \\ \bot & \text{if } b = 0 \end{cases}
$$

Special Base Interval

$$
\begin{pmatrix} a & c \\ b & d \end{pmatrix} ([0, \infty]) = \begin{cases} \begin{bmatrix} \frac{a}{b}, \frac{c}{d} \end{bmatrix} & \text{if } \det \begin{pmatrix} a & c \\ b & d \end{pmatrix} < 0\\ \begin{bmatrix} \frac{c}{d}, \frac{a}{b} \end{bmatrix} & \text{if } \det \begin{pmatrix} a & c \\ b & d \end{pmatrix} > 0 \end{cases}
$$

The Refinement Property

$$
\begin{pmatrix} a & c \\ b & d \end{pmatrix} ([0, \infty]) \subseteq [0, \infty]
$$

$$
\begin{pmatrix} a, b, c, d \ge 0 \\ \text{or} \\ a, b, c, d \le 0 \end{pmatrix}
$$

and

$$
\left(\begin{array}{c}a\\b\end{array}\right),\left(\begin{array}{c}c\\d\end{array}\right)\neq\left(\begin{array}{c}0\\0\end{array}\right)
$$

Unsigned General Normal Product

- **End points**
- **Base interval**

 $[0,\infty]$

 \mathbb{Q}

 Digit set

$$
M \in \left\{ \left(\begin{array}{c} a & c \\ b & d \end{array} \right) \middle| a, b, c, d \in \mathbb{N} \right\}
$$

 Digit map

$$
f_{M}\left(x\right) =M\left(x\right)
$$

 Example

$$
M_0([0, \infty]) = [1, \infty]
$$

\n
$$
M_0(M_1([0, \infty])) = [2, 3]
$$

\n
$$
M_0(M_1(M_2([0, \infty]))) = \left[\frac{5}{2}, \frac{11}{4}\right] = [2.5, 2, 75]
$$

\n
$$
M_0(M_1(M_2(M_3([0, \infty]))) = \left[\frac{8}{3}, \frac{49}{18}\right] = [2.666..., 2, 722...]
$$

Comparisons

 Möbius transformation

$$
\begin{pmatrix} a & c \\ b & d \end{pmatrix} (x) = \frac{ax+c}{bx+d}
$$

 Decimal representation

$$
f_d(x) = \frac{x+d}{10} = \begin{pmatrix} 1 & d \\ 0 & 10 \end{pmatrix} (x)
$$

 Redunandant binary representation

$$
f_d(x) = \frac{x+d}{2} = \begin{pmatrix} 1 & d \\ 0 & 2 \end{pmatrix} (x)
$$

 Continued fraction representation

$$
f_d(x) = d + \frac{1}{x} = \left(\begin{array}{c} d & 1\\ 1 & 0 \end{array}\right)(x)
$$

 Sign set

$$
M \in \left\{ \left(\begin{array}{c} a & c \\ b & d \end{array} \right) \middle| a, b, c, d \in \mathbb{Z} \right\}
$$

 Sign map

$$
f_{M}\left(x\right) =M\left(x\right)
$$

 Unsigned general normal product

 \overline{x}

 Example

$$
\begin{array}{|c|c|c|}\hline & M_0 & \\ \hline & 1 & \\ \hline & 1 & 1 \end{array}\hline \left(\begin{array}{c} M_1 & \\ 2 & 1 \\ 0 & 1 \end{array}\right)\left(\begin{array}{c} M_2 & \\ 3 & 1 \\ 1 & 3 \end{array}\right)\left(\begin{array}{c} M_3 & \\ 1 & 0 \\ 1 & 2 \end{array}\right)\cdots
$$

$$
M_0([0, \infty]) = [-1, 1]
$$

\n
$$
M_0(M_1([0, \infty])) = [0, 1]
$$

\n
$$
M_0(M_1(M_2([0, \infty]))) = \left[\frac{1}{4}, \frac{3}{4}\right]
$$

\n
$$
M_0(M_1(M_2(M_3([0, \infty]))) = \left[\frac{1}{4}, \frac{1}{2}\right])
$$

Unsigned Exact Floating Point

3 digit matrices

$$
D_0 \stackrel{\text{def}}{=} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}
$$

$$
D_{-1} \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}
$$

Conjugate to the redundant binary

 $D_d =$ $\begin{pmatrix} 1 & -1 \end{pmatrix}$ $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}^{-1}$ - $\left(\begin{array}{cc} 1 & d \\ 0 & 2 \end{array}\right)$ - $\begin{pmatrix} 1 & -1 \\ 1 & -1 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ \equiv $\int 3+d+1+d$ $1-d \ 3-d$ \setminus

Signed Exact Floating Point

4 sign matrices

Form a cyclic group of order 4

$$
S_{\infty}^{1} = S_{\infty} = \text{rotation by } \frac{\pi}{2}
$$

$$
S_{\infty}^{2} = S_{-}
$$

$$
S_{\infty}^{3} = S_{0}
$$

$$
S_{\infty}^{4} = S_{+}
$$

Tensors

Use **Tensors** to represent **2-D Möbius transformations**

 $a,b,c,d,e,f,g,h\in\mathbb{Z}$ and $x,y\in\mathbb{R}$

$$
\Upsilon\left(\begin{array}{cc}a&c&e&g\\b&d&f&h\end{array}\right)(x,y)=\frac{axy+cx+ey+g}{bxy+dx+fy+h}
$$

• Picture representation

Information in a tensor

$$
\begin{pmatrix}\na & c & e & g \\
b & d & f & h\n\end{pmatrix} ([0, \infty], [0, \infty])
$$
\n
$$
= \begin{pmatrix}\na & c \\
b & d\n\end{pmatrix} ([0, \infty]) \cup \begin{pmatrix}\ne & g \\
f & h\n\end{pmatrix} ([0, \infty]) \cup
$$
\n
$$
\begin{pmatrix}\na & e \\
b & f\n\end{pmatrix} ([0, \infty]) \cup \begin{pmatrix}\nc & g \\
d & h\n\end{pmatrix} ([0, \infty])
$$

Basic Arithmetic Operations

$$
\begin{pmatrix} a & c & e & g \\ b & d & f & h \end{pmatrix} (x, y) = \frac{axy + cx + ey + g}{bxy + dx + fy + h}
$$

$$
T_{+}(x, y) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} (x, y) = x + y
$$

\n
$$
T_{-}(x, y) = \begin{pmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} (x, y) = x - y
$$

\n
$$
T_{\times}(x, y) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} (x, y) = x \times y
$$

\n
$$
T_{\div}(x, y) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} (x, y) = x \div y
$$

Transcendental Functions

Transcendental functions can be constructed using functions of the form

This has been done for sin, cos, tan, arctan, exp, ln, tanh, arcsinh, arctanh and pow.

Expression Trees

Logarithm

 $\bullet\ \mathbb{R}^\infty \Longrightarrow \big[\frac{1}{2}$ $\frac{1}{2}, 2]$ $\log(x) = \log\left(\frac{x}{2}\right)$ $\overline{2}$ $\Big) + \log(2)$ $log(x) = log(2x) - log(2)$ \bullet $\left[\frac{1}{2}\right]$ $\frac{1}{2}, 2]$ $\overline{\mathcal{Z}}$ 2 -1 $1 + 1$ 1 1 $|0|$ $\frac{3}{2}$ 0 1 0 $\frac{5}{2}$ 0 \sum $\vert 0 \vert$ $\mathbf{1}$ 2 $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 3 2 \pm x x x $\log(x) = \left[\begin{array}{cc} \frac{1}{2} & 1 \\ 0 & 1 \end{array}\right]$ T_0 $T₁$ $T₂$ Information

$$
T_0 = \begin{pmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix}
$$

$$
T_{n\geq 1} = \begin{pmatrix} n & 2n+1 & n+1 & 0 \\ 0 & n+1 & 2n+1 & n \end{pmatrix}
$$

Exponential

•
$$
\mathbb{R}^{\infty} \Longrightarrow [-1, 1]
$$

exp(x) = $\left(\exp\left(\frac{x}{2}\right)\right)^2$

$$
T_n = \left(\begin{array}{cc} 2n+2 & 2n+1 & 2n & 2n+1 \\ 2n+1 & 2n & 2n+1 & 2n+2 \end{array}\right)
$$

Tangent

$$
T_0 = \begin{pmatrix} 1 & 1 & -1 & -1 \\ 2 & 0 & 0 & 2 \end{pmatrix}
$$

$$
T_{n\geq 1} = \begin{pmatrix} 2n+1 & 2n-1 & 2n+1 & 2n+3 \\ 2n+3 & 2n+1 & 2n-1 & 2n+1 \end{pmatrix}
$$

Arctangent

•
$$
\mathbb{R}^{\infty}
$$
 \Longrightarrow [-1, 1]
\n $\arctan (S_{+}(x)) = \arctan (S_{0}(x)) + \frac{\pi}{4}$
\n $\arctan (S_{\infty}(x)) = \arctan (S_{0}(x)) + \frac{\pi}{2}$
\n \bullet [-1, 1]
\n $\text{rctan}(S_{0}(x)) = \frac{\sqrt{\frac{1}{2} + \frac{1}{2}}}{2}$
\n \times
\n $\frac{\sqrt{3} + \frac{1}{2}}{\sqrt{3} + \frac{1}{2}}}$
\n \times
\n $\frac{\sqrt{3} + \frac{1}{2}}{\sqrt{3} + \frac{1}{2}}}$
\n \times
\n $\frac{\sqrt{3} + \frac{1}{2}}{\sqrt{3} + \frac{1}{2}}}$
\n \times
\n $\frac{\sqrt{3} + \frac{1}{2}}{\sqrt{3} + \frac{1}{2}}}$

$$
T_0 = \begin{pmatrix} 1 & 1 & -1 & -1 \\ 2 & 0 & 0 & 2 \end{pmatrix}
$$

$$
T_{n\geq 1} = \begin{pmatrix} 2n+1 & n & 0 & n+1 \\ n+1 & 0 & n & 2n+1 \end{pmatrix}
$$

Converting Expression Tree to Exact Floating Point

Reduction Rules

- 1. **Absorb** vector into matrix to give vector
- 2. **Absorb** matrix into matrix to give matrix
- 3. **Absorb** vector into tensor to give vector or matrix
- 4. **Absorb** matrix into tensor to give tensor
- 5. **Exchange** digit matrices between tensors
- 6. **Emit** exact floating point from root node

Absorption Rules

Absorption into matrices

 Absorption into tensors

Exchange Rule

• Exchange digit matrices between tensors

provided

$D_d([0,\infty]) \supseteq T([0,\infty])$

Emission Rules

 Emit digit matrix (or sign matrix) from matrix

provided

```
D_d([0,\infty]) \supseteq M([0,\infty])
```
 Emit digit matrix (or sign matrix) from tensor

provided

 $D_d([0,\infty]) \supseteq T([0,\infty])$

Matrix Information Flow Analysis

 Arbitrary matrix in expression tree

ε digits
\n
$$
\uparrow \qquad M = \left(\begin{array}{cc} a & c \\ b & d \end{array}\right)
$$
\nδ digits

- \bullet Want to **emit** ϵ digits
- However insufficient information
- So, need to **absorb** δ digits
- \bullet Question: Find maximum δ such that cannot emit more than ϵ digits
- **Answer:**

$$
\delta = \epsilon + \left\lfloor \log_2\left(\frac{\left|\operatorname{det}\left(M\right)\right|}{\max\left(\left|a+b\right|,\left|c+d\right|\right)^2}\right)\right\rfloor
$$

 Fast algorithm for this involves **basic arithmetic operations** and **counting bits**.

Tensor Information Flow Analysis

 Arbitrary tensor in expression tree

- \bullet Want to **emit** ϵ digits
- However insufficient information
- So, need to **absorb** $\delta_{\rm L}$ and $\delta_{\rm R}$ digits
- 2 Questions: Find maximum $\delta_{\rm L/R}$ such that cannot emit more than ϵ digits **regardless of the number of absorptions on the right/left**
- **2 Answers:**Similar to matrix formula

Pi

Ramanujan's amazing formula for π

$$
\frac{1}{\pi} = \sum_{n=0}^{\infty} (-1)^n \frac{12(6n)!}{(n!)^3 (3n)!} \frac{545140134n + 13591409}{(640320^3)^{n+\frac{1}{2}}}
$$

with some magic can be converted into

$$
\frac{\sqrt{10005}}{\pi} = \left(\begin{array}{cc} 6795705 & 6795704\\213440 & 213440 \end{array}\right) \prod_{n=1}^{\infty} M_n
$$

where

$$
M_n = \begin{pmatrix} a_n - b_n - c_n & a_n + b_n - c_n \\ a_n + b_n + c_n & a_n - b_n + c_n \end{pmatrix}
$$

\n
$$
a_n = 10939058860032000n^4
$$

\n
$$
b_n = (2n - 1) (6n - 5) (6n - 1) (n + 1)
$$

\n
$$
c_n = (2n - 1) (6n - 5) (6n - 1) (545140134n + 13591409)
$$

World Record

$$
51,539,600,000\,\, {\rm decimal\,\, digits}
$$