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Real Numbers R

Sequences of nested closed intervals

[P0, 2] 2 [p1,q1] 2 [p2,qe] 2 - -

P — qn] — 0@sn — oo

ﬂ [pna Qn] — {ZE}

neN
Restrict end points to countable subset IF C R
(@) Rational numbers Q

(b) 2-adic numbers {2%| n,m € Z}
(c) Quadratic field Q (v/5) = {p+ ¢v/5| p,q € Q}



Add Infinity

e All real numbers have reciprocals except 0.
e But we cannot necessarily detect 0.
e So we have to include 0! denoted by oc.

e This is known as the one-point compactification of
the real line denoted R°.

0 ()
a(X)
>
o(-1) O o(1) X
o(0)




Add Bottom

e However, including oo leads to other difficulties.
e What are we to make of 0 x co0?

e \We know that for any real number z
Oxax=0
and for any non-zero real number x
rxx t=1.

e The only sensible answer is to introduce the concept
of an “undefined number” or “not a number” de-
noted by NaN in the floating point community.

e Domain theoretically, this object is of course bot-
tom denoted _L.



Continuous Domain

(IR, 2)

extended
eal numbers
ontherim

e [R* is the set of closed intervals in R U {oc} in-
cluding intervals through oc.

e For example:
|1, —1] denotes the set
{reR|lz<-1}U{reR|z>1}U{c0}.



\ectors

e Use Vectors to represent extended rational num-
bers

a,b e Z—{0}

o) -2

e Drop @ for convenience

e Picture representation

e Note scaling invariance



Decimal Representation

e End points
n
{m_m n,m € Z}
e Base interval
0, 1]
e Digit set
d €{0,1,2,3,4,5,6,7,8,9}
e Digit map
x+d
fal@) ==
e Example
0.[3/1/74]-
\U/ —
A0 = [ )
f3(f1([0,1)) = :13_010,13_020]
f5 (A (£ (0,1) = [ ]
P 01D = [t

Efficient algorithms for + and — of finite representations




Redundant Binary Representation

e End points

{% n,m e Z}
e Base interval
[_171]
e Digit set
de{-1,0,1}
e Digit map
fa (z) m;d
e Example
0./11/-1/01
Y
A1) = [0,1]
fi(f-([=1,1]) = [0, 3]
fAlfa (H(=11) = [§3]
fulfa (fo(A(=1,10)) = [1.3

Efficient algorithms for + and — of finite representations




Continued Fraction Representation

e End points
Q
e Base interval
1, o0]
e Digit set
de{1,2,3,4,5,...}
e Digit map ,
fd (CIZ) = d—|—5
e Example
V2 =1+ ! ;
2 |+ q
2 |+
2|+ -
Y
fulfa([L,00])) = [5,5] = [1.333...,1.5]
filfa(fa([Lod]) = [£, 2] =14, 1.425. ]
fAf2(fa(fa([1,00]) = |57,15] = [1.411...,1.416. .

Elegant algorithms for transcendental functions

|



Matrices

e Use Matrices to represent MObius transformations

a,b,c,d € Zandz € R
a C axr + C

/] —
(b d>(5’3) br +d

e Drop V¥ for convenience

e Picture representation

e Note scaling invariance



Properties

e Composition of MGbius transformations is equiv-
alent to product of matrices

M (N (z)) = (M o N)(z)

e Application of MGbius transformations to extended
rational numbers is equivalent to product of ma-
trices and vectors

MV)=MeV

e What do singular matrices represent?

00 0 ifx=#£ o0
(O 1)(33):OX:EZ{J_ If x = o0

because

(1) (5)= () =107



Special Base Interval

0, 00
A\ C
=




The Refinement Property



Unsigned General Normal Product

e End points
Q
e Base interval
0, 00]

e Digit set

M e {(Z 2) a,b,c,deN}
e Digit map

fur () = M ()

e Example

M M, M, M;

- ()

Y
MO([Ov OO]) — [1700]
My (M, (|0, 00])) = (2,3
Moy (My (M5 ([0,00]))) = |3, 5] = [2.5,2,75]
My (M (M (M5 ([0,0])))) = [3, 2] =[2.666...,2,722..

|



Comparisons

e MObius transformation
a C _ax + c
ba) W = e ra

e Decimal representation

file) =557 = (3 5 ) @

e Redunandant binary representation

fe) ="~ (5 3) @

e Continued fraction representation

fiw)=di1=({5)@

X



Signed General Normal Product

e Sign set

veq(ia)

e Sigh map

a,b,c,dGZ}

fu (@) = M ()
e Unsigned general normal product

e Example
MO M1 M2 M3

() 1G0)

Y
My ([0, 00]) = [~1,1]
Mo (M ([0, 00])) = [0,1]
Mo (Ml <M2 ([0,00D)) — [i’g]
Mo (My (M (M3([0,00])))) = (53]



Unsigned Exact Floating Point

3 digit matrices

p, ¥ (10} « S p (2l
1 2 011300

Conjugate to the redundant binary

d+x

b (11 (1d) (1 -1\ _(3+d1+d
d—\1 1 0 2 1 1) \1-d3—-d



Signed Exact Floating Point

4 sign matrices

def 1 1
s = (1))

||r_%t

2 (17

S. ([0, 00]) = [0, ]
Seo ([0, 00]) = [1, —1]
S_ ([0, 00 oo()]
S()(OOO —1 1]

Form acyclic group of order 4

S, = S = rotation by 2

S2 -5
3 =5,
SﬁO_S+



Tensors

e Use Tensors to represent
2-D Mobius transformations

a,b,c,d,e, f,g,h € Zand x,y € R

r(ecey (z )_aa:y+c:1:+ey+g
bdfh) Y  beyrde+ fu+h

e Picture representation




|nformation 1n atensor




Basic Arithmetic Operations

ac e g (z )_axy+ca:+ey+g
bdfh) Y  beyrde+ fu+h

o) = (g g0 ) ) @ =2ty
T @) = (0o o 1)@m=
T = (g0 ) @ =2 xs
Toe) = (g1 ) @) =50



Transcendental Functions

Transcendental functions can be constructed us-
Ing functions of the form

(0 = T,

S
X T,

This has been done for sin, cos, tan, arctan, exp,
In, tanh, arcsinh, arctanh and pow.



Expression Trees

head cut
exposed =
argul?nents AN

cut




L ogarithm

* [52]
log(x) . 1* 11 Inforrlatmn
e
X 0 Z; 0 T,
N
X 2 22 .
N
with

11 -1 -1
76_(01 1 0)

T n2n+1 n+1 0
L7\ 0 n+l 2n+1n



Exponential

o R* —= [—1,1]

o [—1,1]
p&K) = LT,
s
SR
N
: o5 T,
N
with

T _ 2n+22n+1 2n 2n+1
"\ 2n+1 2n 2n+1 2n+2



o [—1,1]
S0 = | Tl

al
/
>COHI40 5
al
—]
=

/\
/\

11-1-1
75:(20 0 2)

(2n+12n—12n+12n+3)
Tn>1 —

2

>cnwoou/

n+32n+1 2n—1 2n+1



Arctangent
o R¥* — [_17 1]

arctan (S, (x)) = arctan (S, (1)) +
arctan (S (2)) = arctan (S («)) + 5
arctan (5. (x)) = arctan (S (x)) +
o [—1,1]
tan(S0)) = |2 T,
N
X 2 511 2 T,
N
X S 22

/\

11 -1 -1
TO_(20 0 2)

T 2n+1n 0 n+1
nl7 4+l 0n2n+1

with



Converting Expression Tree to Exact
Floating Point

@\ @
- \/

| ®_ﬁ |

e Reduction Rules
1. Absorb vector into matrix to give vector
2. Absorb matrix into matrix to give matrix
3. Absorb vector into tensor to give vector or matrix
4. Absorb matrix into tensor to give tensor
5. Exchange digit matrices between tensors
6. Emit exact floating point from root node



Absorption Rules

e Absorption into matrices

e Absorption into tensors




Exchange Rule

e Exchange digit matrices between tensors

Assimilation

i Absorption/ A

D,
Flow
of _

) |nformation
Dy
i
"
Assimilation

provided
Dq ([0, 00]) 2 T (|0, 00})



Emission Rules

e Emit digit matrix (or sign matrix) from matrix

provided
Dq ([0, oc]) 2 M ([0, oc])

e Emit digit matrix (or sign matrix) from tensor

provided
Dq ([0, 00]) 2 T (|0, 00}



Matrix Information Flow Analysis

e Arbitrary matrix in expression tree
e digits

T a c
= (5 a)
T

o digits

e \Want to emit ¢ digits
e However insufficient information
e S0, need to absorb ¢ digits

e Question: Find maximum ¢ such that cannot emit
more than e digits

e ANswer:
d
b= et og, (L)
max (|a + 0|, |c + d|)

e Fast algorithm for this involves basic arithmetic
operations and counting bits.




Tensor Information Flow Analysis

e Arbitrary tensor in expression tree
e digits

T a C
T:(bd
AR

o digits d:digits

e \Want to emit ¢ digits
e However insufficient information
e S0, need to absorb 61, and 6r digits

e 2 Questions: Find maximum ¢y, /g such that cannot
emit more than ¢ digits regardless of the number
of absorptions on the right/left

e 2 Answers:Similar to matrix formula



Pi

Ramanujan’s amazing formulafor 7

i . 12 6n)' 545140134n + 13591409
3n)l (6403203)"+

7

with some magic can be converted into

V10005 (6795705 6795704) ﬁ Iy

T 213440 213440

where

_(an,—by,—cy ap+b, —cy
- \a,+b,+c¢c, a,—b, +c,
= 10939058860032000n*

(2n —1)(6n —5)(6n — 1) (n+ 1)
= (2n — 1) (6n —5) (6n — 1) (545140134n + 13591409)

World Record

51, 539, 600, 000 decimal digits



